Review:

Disturbances: Outside influences that act on a robot while it tries to stay on a path
Trajectory: The path the robot is supposed to be following. It is made up of waypoints that have position, and maybe velocity, or time, or other variables associated with each of them.

Proportional Feedback Control: It is a common solution for keeping a robot on a trajectory. This is when you compare the current value to the desired value to determine the error. The output signal is proportional to the size of the error.

We'll use the vector format notation for a line and define two in particular:

$$
\begin{aligned}
l \overrightarrow{l n e}_{\text {start to end }} & ={\overrightarrow{\operatorname{lnn}_{S \rightarrow E}}}=\left[\begin{array}{l}
E n d_{x}-\text { Start }_{x} \\
\text { End }_{y}-\text { Start }_{y}
\end{array}\right] \\
\overrightarrow{\text { lne }}_{\text {start to robot }} & =\overrightarrow{l n e}_{S \rightarrow R}=\left[\begin{array}{l}
r_{\text {robot }}^{x} \\
\text { robot }_{y}-\text { start }_{x} \\
\text { start }_{y}
\end{array}\right]
\end{aligned}
$$

We can use the cross product to determine which side we are on:

$$
\begin{gathered}
\text { side }=\overrightarrow{\operatorname{lng}}_{S \rightarrow E} \times \overrightarrow{l ı n e}_{S \rightarrow R}=\left[\begin{array}{c}
0 \\
10
\end{array}\right] \times\left[\begin{array}{l}
2 \\
4
\end{array}\right] \\
{\left[\begin{array}{c}
A \\
C
\end{array}\right] \times\left[\begin{array}{l}
B \\
D
\end{array}\right] \rightarrow A D-B C}
\end{gathered}
$$

Negative means we are on the right side, positive on the left side.
We can find our distance from the line using the dot product and the normal vector:

$$
\text { distance }=\frac{\left|\overrightarrow{l n e}_{S \rightarrow R} \cdot \overrightarrow{\text { normal }}\right|}{\| \text { normal } \|}
$$

We can find the normal by taking the original line, swapping the x and y coordinates, and negating one of them.

$$
\overrightarrow{\text { Lıne }}=\left[\begin{array}{l}
X \\
Y
\end{array}\right] \rightarrow \overrightarrow{\text { Normal }}=\left[\begin{array}{c}
-Y \\
X
\end{array}\right]
$$

For the magnitude, we take the Pythagorean theorem to find the total length:

$$
a^{2}+b^{2}=c^{2}
$$

Where a and b are the x and y components, and c is the total length.
Name: \qquad Class: \qquad

$$
\left[\begin{array}{l}
A \\
C
\end{array}\right] \cdot\left[\begin{array}{l}
B \\
D
\end{array}\right] \rightarrow A B+C D
$$

For the dot product, we multiply the x terms of both arguments, multiply the two y terms, then add the results.

Final Step:

Translate the error signal into a steering angle. We use a constant factor called the proportional gain, to both scale and translate the error into the correct units.

Error \times proportional gain $=$ command
E \times K $=$ command
$K=$ proportional gain
E = Error
$K=-\quad---------$
\qquad Class: \qquad

Challenge Questions:

Our robot wants to follow a diagonal line going through the origin and a point at $\mathbf{0 , 1 0}$. If the robot is at $\mathbf{2 , 4}$, how far away from the line is the robot? And on which side?

If the proportional gain is $\mathbf{3}$ degrees per meter, what is the commanded steering angle from the controller?
\qquad Class: \qquad

